
The Anatomy of a Compiler

The work of a compiler can be split into 5 major activities. The
last of these is code optimization and time won't allow us to do
much with that. The other 4 activities result in a working
compiler that generates correct but rather inefficient code. An
actual working compiler can break these activities up in many
different ways, but in principle there are just a few primary
modules:

The Scanner.

This does lexical analysis -- it takes as input a program in the
source language and produces a stream of tokens representing
the individual words -- identifiers, operators, punctuation
symbols, and so forth -- of the program.

The Parser

This does syntatic analysis. Almost all languages since Algol-60
have been defined in terms of grammars. The parser takes as
input the token stream from the Scanner and produces an
intermediate representation for the program based on the
language's grammar. This representation can take various forms;
the simplest and most canonical is a parse tree. An important
sideline for the Parser is to generate error messages when it finds
constructs in the input program that do not match the grammar
rules.

The Type Checker
This does semantic analysis. The input is the intermediate
structure generated by the Parser; in our case this will be a
parse tree. There are two stages to semantic analysis. One is
resolving references -- connecting each use of an identifier to
its declaration. The other stage is actual type-checking --
determining the type of every expression in the language and
ensuring that it is type-correct. Of course, error messages are
generated for any semantic errors (errors not caught by the
Parser) that are detected. The Type Checker should modify
the intermediate structure in ways to make it easy to
generate code.

The Code Generator
This walks along the intermediate representation, as modified
by the Type Checker, and generates assembly language code for
the program. This code can be fed into an assembler, producing
executable machine code equivalent to the source program.

It is not difficult to generate code from a good intermediate
representation. Unfortunately, the code that is generated is
incredibly inefficient, far worse than any human programmer
would ever design. Production compilers use a further stage for
optimization. There are a variety of optimization tasks that can
take place at various times during the compilation process:

• Register allocation algorithms make optimal use of the
available registers; this needs to happen during code
generation.

• Source code optimizers replace portions of the input
program with equivalent code that can be implemented
more efficiently.

• Assembly code optimizers use a window of 6, or 7, or
more statements in the assembly code and eliminate
redundant or inefficient statements. This is a post-
processing step.

